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 INTRODUCTION 1

Pseudo-Direct Drives (PDD) offer an innovative alternative to Permanent magnet (PM) 

direct drives for wind turbines, Fig. 1. Since these machines have torque densities at 

least twice that of equivalent radial-field PM direct-drives machines, they may enable the 

realisation of light-weight and cost-effective wind-turbine drive train solutions [1]. 

However, key to achieving such a solution is the optimisation of the PDD, which so far 

has been performed by the use of finite element (FE) methods. While FE predictions may 

allow for an accurate analysis they also could result in a significant computational effort 

and therefore may not be a suitable tool for multi-dimensional design optimisation. 

Analytical models for electrical machines may offer a numerically fast yet accurate 

approach to design the PDD. However while many analytical models have been proposed 

for single airgap electrical machines [2], only few have discussed the topology of a 

magnetic gear (MG) [3]-[4] where two airgaps are present, while none have addressed 

the PDD prior to this project. In the framework of this project these models are further 

developed to account for the entire geometry of the active components of the PDD, 

including the iron regions of the pole-pieces (PP) and the stator. The predictions of the 

analytical models are compared to those from 2D FE, both on no-load and on-load 

operating conditions, and an excellent agreement is achieved as will be seen in the 

chapters 3 and 4. Procedures have been developed to optimise the MG and the PDD for 

wind turbine application and these are implemented into MATLAB. The developed code 

can readily be converted to other common languages, such as C++, and can be 

combined with a graphical user interface (GUI). The developed tool has been utilised to 

analyse and optimise PDDs for the power class of 10-20MW. Furthermore, FE studies 

have shown that adopting Halbach magnetization (HM) distributions results in significant 

improvement in the torque transmission capability of a MG [5]. A HM distribution also 

provides an inherently sinusoidal magnetic field, which allows for small torque ripple and 

a self-shielding magnetization that reduces the required back-iron and may result in a 

significantly higher airgap field than equivalent radially magnetized PMs. Therefore, the 

model presented also considers a Halbach magnetisation on both high-speed (HS) rotor 

and stator. Furthermore, the model is utilised to quantify and compare the effects of a 

radial magnetisation and a Halbach magnetisation on both HS rotor and stator.  
 

 
  

Fig. 1 Schematic for the integration of a PDD within a wind turbine. 

 

 



 

 

5 | P a g e  

(INNWIND.EU, Deliverable D3.2.1, Final report) 

 

 ANALYTICAL MODEL  2

Analytical models for the prediction of the flux density distributions in the air, PM and 

lamination regions of a PDD for on-load conditions, considering radial and Halbach 

magnetisation, have been developed in this project [6]-[8]. Fig. 2 shows the schematic of 

a PDD and its various regions employed for the development of the analytical model. In 

the analysis the iron is assumed to be infinitely permeable and the end effects are 

neglected. The windings are represented by a current sheet at the stator iron bore radius 

𝑅𝑆. Initially the solutions for the flux density distributions in the air and PM regions are 

derived and various secondary parameters, such as the torque and the shear stress are 

obtained from the predicted flux density distributions in the airgap regions. In order to 

calculate the iron losses in the lamination regions a detailed knowledge about the flux 

density distribution in the pole-piece (PP) iron regions and the average flux density 

distribution in the stator iron regions is required. Therefore, the solutions obtained for the 

magnetic flux density in the PM and air regions are utilised to compute the flux density 

distribution in the PP iron regions and the average flux density distributions in the stator 

iron regions. Furthermore, a model for the air and PM regions of a MG is readily available 

by setting the current sheet to zero.  

 

 
 Fig. 2. Geometry for a PDD section. PMs consist of four Halbach segments 

per pole-pair on the stator. A current sheet is situated at the bore radius RS. 
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2.1 Analytical model for the airgap and permanent magnet regions 

For quasi-static conditions the Maxwell equations are 

 ∇𝐵⃗ = 0 (1) 

 ∇ × 𝐻⃗⃗ = 𝐽  (2) 

where 𝐵⃗  is the magnetic flux density, 𝐻⃗⃗  is the magnetic field strength, and 𝐽  is the current 

density. 𝐵⃗  is related to 𝐻⃗⃗  by 

 𝐵⃗ = 𝜇0𝐻⃗⃗                    in air regions (3) 

 𝐵⃗ = 𝜇0𝜇𝑟𝐻⃗⃗ + 𝜇0𝑀⃗⃗    in PM regions (4) 

where 𝑀⃗⃗  is the residual magnetisation, 𝜇0 is the permeability of free space, and 𝜇𝑟 is the 

relative permeability of the PMs. The solution is obtained by solving the Laplace and 

Poisson equations 

 Δ𝐴 = 0                   in air regions (5) 

 Δ𝐴 = −𝜇0∇ × 𝑀⃗⃗    in PM regions (6) 

and applying the boundary conditions, where 𝐴  is the vector potential and is related to 

the flux density by 𝐵⃗ = ∇ × 𝐴 . Since end effects are neglected only the z-component of 𝐴  
is considered and it can be expressed as a Fourier series. The coefficients of the Fourier 

series for each region are related, and are determined by applying the boundary 

conditions at the interfaces and solving the resulting matrix equation. Viz. for the 

interfaces between air/PM regions and iron regions the tangential component of the 

magnetic field is set to zero. With the exception of the stator bore, where the tangential 

component of the magnetic field is set to be equal to the current sheet representing the 

stator windings. Furthermore, at all other interfaces the tangential component of the 

magnetic field and the normal component of the flux density are set to be equal [3]. At 

the stator bore radius RS, the circumferential component of the magnetic field equals the 

current sheet, thus 

 
𝐻𝜃,𝐼𝑉(𝑅𝑆, 𝜃) =

𝐵𝜃,𝐼𝑉(𝑅𝑆, 𝜃)

𝜇0𝜇𝑟
−

𝑀𝜃,𝐼𝑉(𝜃)

𝜇𝑟
= −𝐽𝑠(𝜃) (7) 

where 𝐻𝜃,𝐼𝑉, 𝐵𝜃,𝐼𝑉 and 𝑀𝜃,𝐼𝑉 are the circumferential components of the magnetic field, 

flux density and residual magnetisation in region IV, respectively. 𝐽𝑆 is the current sheet 

representing the stator windings and is expressed in form of a Fourier representation by 

the coefficients 𝐽𝐴,𝑛 and 𝐽𝐵,𝑛 as 

 

𝐽𝑆(𝜃) = ∑ (
𝐽𝐴,𝑛

𝐽𝐶,𝑛 
) ⋅ (

𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (8) 

The solution for the vector potential in the magnet region IV is given by 

 𝐴𝐼𝑉(𝑟, 𝜃) = 𝐴𝐺,𝐼𝑉(𝑟, 𝜃) + 𝐴𝑃,𝐼𝑉(𝑟, 𝜃) + 𝐴𝐶,𝐼𝑉(𝑟, 𝜃) (9) 
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where AG,IV  and AP,IV are the general and a particular solution of equation (6) respectively 

when the current sheet is not considered, plus a term AC,IV that takes into account of the 

current sheet. Furthermore these can be expressed as 

 

𝐴𝐺,𝐼𝑉(𝑟, 𝜃) = ∑
𝑃𝑛(𝑟, 𝑅𝑆)

𝑃𝑛(𝑅𝑚𝑜, 𝑅𝑆)
(
𝐴𝐼𝑉,𝑛

𝐶𝐼𝑉,𝑛
) ⋅ (

𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (10) 

 

𝐴𝑃,𝐼𝑉(𝑟, 𝜃) = 𝐵𝑟 ∑ (
𝑋𝐼𝑉,𝐴,𝑛(𝑟)

𝑋𝐼𝑉,𝐶,𝑛(𝑟)
) ⋅ (

𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (11) 

 

𝐴𝐶,𝐼𝑉(𝑟, 𝜃) = 𝜇0𝜇𝑟 ∑
𝑅𝑆

𝑛
{(

𝑟

𝑅𝑆
)
𝑛

−
𝑃𝑛(𝑟, 𝑅𝑆)

𝑃𝑛(𝑅𝑚𝑜, 𝑅𝑆)
(
𝑅𝑚𝑜

𝑅𝑆
)
𝑛

}(
𝐽𝐴,𝑛

𝐽𝐶,𝑛
) ⋅ (

𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (12) 

where 𝐵𝑟 is the remanence of PMs, the radii 𝑅𝑚𝑜 and 𝑅𝑆 are shown in Fig. 2, 𝐴𝐼𝑉,𝑛 and 

𝐶𝐼𝑉,𝑛 are coefficients, 

 
𝑃𝑛(𝑣, 𝑤) = (

𝑣

𝑤
)
𝑛

+ (
𝑣

𝑤
)
−𝑛

 (13) 

and 𝑣 and 𝑤 are variables. XIV,A,n(r) and XIV,C,n(r) are functions dependent on the 

magnetisation distribution, and for a discrete Halbach magnetisation distribution their 

expressions are given by [6]: 

 
(
𝑋𝐼𝑉,𝐴,𝑛(𝑟)

𝑋𝐼𝑉,𝐶,𝑛(𝑟)
) = 𝑋𝐼𝑉,𝑛(𝑟) (

𝑠𝑖𝑛(𝑛𝛩𝑆)

−𝑐𝑜𝑠(𝑛𝛩𝑆)
) (14) 

 
𝑋𝐼𝑉,𝑛(𝑟) = ℎ𝑛,𝑚𝑆,𝑝𝑆

(𝑌𝐼𝑉,𝑛(𝑟) −
𝑃𝑛(𝑟, 𝑅𝑆)

𝑃𝑛(𝑅𝑚𝑜, 𝑅𝑆)
𝑌𝐼𝑉,𝑛(𝑅𝑚𝑜)) (15) 

 

ℎ𝑛,𝑚𝑆,𝑝𝑆
=

𝑚𝑆𝑝𝑆

𝜋

𝑠𝑖𝑛 (𝑛
𝜋

𝑚𝑆𝑝𝑆 
)

𝑛
𝜖𝑛,𝑝𝑆

 
(16) 

 
𝑌𝐼𝑉,𝑛(𝑟) =

𝑅𝑆

𝑛
 (

𝑟

𝑅𝑆
)
𝑛

𝐺𝐼𝑉,𝑛 + 𝑓𝑛(𝑟)(𝑛𝜖𝑛,𝑚𝑆,𝑝𝑆
+ + 𝜖𝑛,𝑚𝑆,𝑝𝑆

− ) (17) 

 

𝑓𝑛(𝑟) = {
𝑟

1

1 − 𝑛2
𝑛 > 1

1

2
𝑟 𝑙𝑛(𝑟) 𝑛 = 1

 (18) 

 𝜖𝑛,𝑚,𝑝𝑆
+ = 𝜖𝑚𝑆𝑝𝑆,𝑛−𝑝𝑆

+ 𝜖𝑚𝑆𝑝𝑆,𝑛+𝑝𝑆
 (19) 

 𝜖𝑛,𝑚,𝑝𝑆
− = 𝜖𝑚𝑆𝑝𝑆,𝑛−𝑝𝑆

− 𝜖𝑚𝑆𝑝𝑆,𝑛+𝑝𝑆
 (20) 

 
𝐺𝐼𝑉,𝑛 = −(𝑛𝜖𝑛,𝑚𝑆,𝑝𝑆

+ + 𝜖𝑛,𝑚𝑆,𝑝𝑆
− )

𝜕𝑓𝑛
𝜕𝑟

(𝑅𝑆) + 𝜖𝑛,𝑚𝑆,𝑝𝑆
−  (21) 

 
𝜖𝑛,𝑝𝑆

= {
1 𝑛  𝑚𝑜𝑑  𝑝𝑠 = 0
0 𝑛  𝑚𝑜𝑑  𝑝𝑠 ≠ 0

 (22) 

where 𝑝𝑆 is the number of pole-pairs on the stator, 𝑚𝑆 is the number of Halbach 

segments per pole-pair, 𝛩𝑆 is an angle depended on the position of the stator PMs, 

shown in Fig. 2, and 𝑛  𝑚𝑜𝑑  𝑝𝑠 is the modulo operation. Similarly the solutions for PM 

region I are given by 
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 𝐴𝐼(𝑟, 𝜃) = 𝐴𝐺,𝐼(𝑟, 𝜃) + 𝐴𝑃,𝐼(𝑟, 𝜃) (23) 

where  

 

𝐴𝐺,𝐼(𝑟, 𝜃) = ∑
𝑃𝑛(𝑟, 𝑅𝐻𝑆)

𝑃𝑛(𝑅𝑚𝑖, 𝑅𝐻𝑆)
(
𝐴𝐼,𝑛

𝐶𝐼,𝑛
) ⋅ (

𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (24) 

 

𝐴𝑃,𝐼(𝑟, 𝜃) = 𝐵𝑟 ∑ (
𝑋𝐼,𝐴,𝑛(𝑟)

𝑋𝐼,𝐶,𝑛(𝑟)
) ⋅ (

𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (25) 

 
(
𝑋I,𝐴,𝑛(𝑟)

𝑋I,𝐶,𝑛(𝑟)
) = 𝑋𝐼,𝑛(𝑟) (

𝑠𝑖𝑛(𝑛𝛩𝐻𝑆)

−𝑐𝑜𝑠(𝑛𝛩𝐻𝑆)
) (26) 

 
𝑋𝐼,𝑛(𝑟) = ℎ𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆

(𝑌I,𝑛(𝑟) −
𝑃𝑛(𝑟, 𝑅H𝑆)

𝑃𝑛(𝑅𝑚i, 𝑅H𝑆)
𝑌I,𝑛(𝑅𝑚𝑜)) (27) 

 
𝑌𝐼,𝑛(𝑟) =

𝑅𝐻𝑆

𝑛
 (

𝑟

𝑅𝐻𝑆
)
𝑛

𝐺𝐼,𝑛 + 𝑓𝑛(𝑟)(𝑛𝜖𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆
+ + 𝜖𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆

− ) (28) 

 
𝐺𝐼,𝑛 = −(𝑛𝜖𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆

+ + 𝜖𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆
− )

𝜕𝑓𝑛
𝜕𝑟

(𝑅𝐻𝑆) + 𝜖𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆
−  (29) 

the radii 𝑅𝐻𝑆 and 𝑅𝑚𝑖 are shown in Fig. 2, and 𝐴𝐼,𝑛 and 𝐶𝐼𝑉,𝑛 are coefficients. The form of 

the solutions in regions II, III and the PP air regions i,..,Q are given by [3]: 

𝐴𝐼𝐼(𝑟, 𝜃) = 𝐴𝐼𝐼,0 + ∑ {
𝑅𝑚𝑖

𝑛

𝑃𝑛(𝑟, 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖 , 𝑅𝑃𝑃𝑖)
(
𝐴𝐼𝐼,𝑛

𝐶𝐼𝐼,𝑛

) +
𝑅𝑃𝑃𝑖

𝑛

𝑃𝑛(𝑟, 𝑅𝑚𝑖)

𝐸𝑛(𝑅𝑃𝑃𝑖, 𝑅𝑚𝑖)
(
𝐵𝐼𝐼,𝑛

𝐷𝐼𝐼,𝑛

)} ⋅ (
𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (30) 

𝐴𝐼𝐼𝐼(𝑟, 𝜃) = 𝐴𝐼𝐼𝐼,0 + ∑{
𝑅𝑃𝑃𝑜

𝑛

𝑃𝑛(𝑟, 𝑅𝑚𝑜)

𝐸𝑛(𝑅𝑃𝑃𝑜 , 𝑅𝑚𝑜)
(
𝐴𝐼𝐼𝐼,𝑛

𝐶𝐼𝐼𝐼,𝑛

) +
𝑅𝑚𝑜

𝑛

𝑃𝑛(𝑟, 𝑅𝑃𝑃𝑜)

𝐸𝑛(𝑅𝑚𝑜, 𝑅𝑃𝑃𝑜)
(
𝐵𝐼𝐼𝐼,𝑛

𝐷𝐼𝐼𝐼,𝑛

)} ⋅ (
𝑐𝑜𝑠(𝑛𝜃)

𝑠𝑖𝑛(𝑛𝜃)
)

∞

𝑛=1

 (31) 

𝐴𝑖(𝑟, 𝜃) = 𝐴𝑖,0 + 𝐵𝑖,0 ln 𝑟 + ∑ {
𝐸𝑛𝜋/𝛽(𝑟, 𝑅𝑃𝑃𝑜)

𝐸𝑛𝜋/𝛽(𝑅𝑃𝑃𝑖, 𝑅𝑃𝑃𝑜)
𝐴𝑖,𝑛

∞

𝑛=1

 (32) 

                  +
𝐸𝑛𝜋/𝛽(𝑟, 𝑅𝑃𝑃𝑖)

𝐸𝑛𝜋/𝛽(𝑅𝑃𝑃𝑖, 𝑅𝑃𝑃𝑜)
𝐵𝑖,𝑛} cos (

𝑛𝜋

𝛽
(𝜃 − 𝜃𝑖) )  

 

where 𝐴𝐼𝐼,𝑛, 𝐵𝐼𝐼,𝑛, 𝐶𝐼𝐼,𝑛, 𝐷𝐼𝐼,𝑛, 𝐴𝐼𝐼𝐼,𝑛, 𝐵𝐼𝐼𝐼,𝑛, 𝐶𝐼𝐼𝐼,𝑛, 𝐷𝐼𝐼𝐼,𝑛, 𝐴𝑖,𝑛, 𝐵𝑖,𝑛, 𝐴𝑖,0, and  𝐵𝑖,0 are 

coefficients, 𝛽 is the PP slot opening angle, the radii RPPi and RPPo are shown in Fig. 2,  

 
𝐸𝑛(𝑣, 𝑤) = (

𝑣

𝑤
)
𝑛

− (
𝑣

𝑤
)
−𝑛

 (33) 

and  𝑣 and 𝑤 are variables. Applying the boundary conditions at the interface between 

region III and IV: 

 𝐵𝑟𝑎𝑑,𝐼𝐼𝐼(𝑅𝑚𝑜, 𝜃) = 𝐵𝑟𝑎𝑑,𝐼𝑉(𝑅𝑚𝑜, 𝜃) (34) 

 
𝐵𝜃,𝐼𝐼𝐼(𝑅𝑚𝑜, 𝜃) =

𝐵𝜃,𝐼𝑉(𝑅𝑚𝑜, 𝜃)

𝜇𝑟
−

𝜇0𝑀𝜃,𝐼𝑉(𝜃)

𝜇𝑟
 (35) 
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gives the following relations between coefficients of regions III and IV for a discrete 

Halbach magnetisation [6]: 

 
(
𝐴𝐼𝑉,𝑛

𝐶𝐼𝑉,𝑛 
) = (

𝐵𝐼𝐼𝐼,𝑛

𝐷𝐼𝐼𝐼,𝑛 
)
𝑅𝑚𝑜

𝑛

𝑃𝑛(𝑅𝑚𝑜, 𝑅𝑃𝑃𝑜)

𝐸𝑛(𝑅𝑚𝑜, 𝑅𝑃𝑃𝑜)
+ (

𝐴𝐼𝐼𝐼,𝑛

𝐶𝐼𝐼𝐼,𝑛 
)
𝑅𝑃𝑃𝑜

𝑛

2

𝐸𝑛(𝑅𝑃𝑃𝑜, 𝑅𝑚𝑜)
 (36) 

 
(
𝐵𝐼𝐼𝐼,𝑛

𝐷𝐼𝐼𝐼,𝑛 
) =

𝑛

𝜇𝑟𝑅𝑚𝑜
(
𝐴𝐼𝑉,𝑛

𝐶𝐼𝑉,𝑛 
)
𝐸𝑛(𝑅𝑚𝑜, 𝑅𝑆)

𝑃𝑛(𝑅𝑚𝑜, 𝑅𝑆)
+ 𝜇0 (

𝑅𝑚𝑜

𝑅𝑆
)
𝑛−1

{1 −
𝐸𝑛(𝑅𝑚𝑜, 𝑅𝑆)

𝑃𝑛(𝑅𝑚𝑜, 𝑅𝑆)
} (

𝐽𝐴,𝑛

𝐽𝐶,𝑛 
) (37) 

 
  +

𝐵𝑟

𝜇𝑟
(−ℎ𝑛,𝑚𝑆,𝑝𝑆

𝜖𝑛,𝑚𝑆,𝑝𝑆
− + 𝑋𝐼𝑉,𝑛

′ (𝑅𝑚𝑜)) (
sin(𝑛Θ𝑆)

−cos(𝑛Θ𝑆)
)                   

where the radius 𝑅𝑃𝑃𝑜 is shown in Fig. 1, 𝑋𝐼𝑉,𝑛
′ (𝑟) is the derivative of 𝑋𝐼𝑉,𝑛(𝑟). 

Similarly the relations of coefficients between regions I and II are given by 

 
(
𝐴𝐼,𝑛

𝐶𝐼,𝑛 
) = (

𝐴𝐼𝐼,𝑛

𝐶𝐼𝐼,𝑛 
)
𝑅𝑚𝑖

𝑛

𝑃𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)
+ (

𝐵𝐼𝐼,𝑛

𝐷𝐼𝐼,𝑛 
)
𝑅𝑃𝑃𝑖

𝑛

2

𝐸𝑛(𝑅𝑃𝑃𝑖, 𝑅𝑚𝑖)
 (38) 

 
(
𝐴𝐼𝐼,𝑛

𝐶𝐼𝐼,𝑛 
) =

𝑛

𝜇𝑟𝑅𝑚𝑖
(
𝐴𝐼,𝑛

𝐶𝐼,𝑛 
)
𝐸𝑛(𝑅𝑚𝑖, 𝑅𝐻𝑆)

𝑃𝑛(𝑅𝑚𝑖, 𝑅𝐻𝑆)
  

+
𝐵𝑟

𝜇𝑟
(−ℎ𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆

𝜖𝑛,𝑚𝐻𝑆,𝑝𝐻𝑆
− + 𝑋𝐼,𝑛

′ (𝑅𝑚𝑖)) (
sin(𝑛Θ𝐻𝑆)

−cos(𝑛Θ𝐻𝑆)
) 

(39) 

The relations between coefficients of region II, III and 1,…,Q are given by [3]: 

 

(
𝐵𝐼𝐼,𝑛

𝐷𝐼𝐼,𝑛
) = ∑{

𝐵𝑖,0

𝜋𝑅𝑃𝑃𝑖
(
𝑟(𝑛, 𝑖)

𝑠(𝑛, 𝑖)
)

𝑄

𝑖=1

 (40) 

 

+ ∑
𝑘

𝛽𝑅𝑃𝑃𝑖
[
𝑃𝑘𝜋/𝛽(𝑅𝑃𝑃𝑖, 𝑅𝑃𝑃𝑜)

𝐸𝑘𝜋/𝛽(𝑅𝑃𝑃𝑖, 𝑅𝑃𝑃𝑜)
𝐴𝑖,𝑘 −

2

𝐸𝑘𝜋/𝛽(𝑅𝑃𝑃𝑖, 𝑅𝑃𝑃𝑜)
𝐵𝑖,𝑘]

∞

𝑘=1

(
𝑓(𝑘, 𝑛, 𝑖)

𝑔(𝑘, 𝑛, 𝑖)
) } 

 

 

(
𝐴𝐼𝐼𝐼,𝑛

𝐶𝐼𝐼𝐼,𝑛
) = ∑{

𝐵𝑖,0

𝜋𝑅𝑃𝑃𝑜
(
𝑟(𝑛, 𝑖)

𝑠(𝑛, 𝑖)
)

𝑄

𝑖=1

 (41) 

 

+ ∑
𝑘

𝛽𝑅𝑃𝑃𝑜
[
𝑃𝑘𝜋/𝛽(𝑅𝑃𝑃𝑜, 𝑅𝑃𝑃𝑖)

𝐸𝑘𝜋/𝛽(𝑅𝑃𝑃𝑖, 𝑅𝑃𝑃𝑜)
𝐴𝑖,𝑘 −

2

𝐸𝑘𝜋/𝛽(𝑅𝑃𝑃𝑖, 𝑅𝑃𝑃𝑜)
𝐵𝑖,𝑘]

∞

𝑘=1

(
𝑓(𝑘, 𝑛, 𝑖)

𝑔(𝑘, 𝑛, 𝑖)
) } 

 

 
𝐴𝑖,𝑘 = ∑

2

𝑛𝛽
{𝑅𝑚𝑖

2

𝐸𝑛(𝑅𝑚𝑖 , 𝑅𝑃𝑃𝑖)
(
𝐴𝐼𝐼,𝑛

𝐶𝐼𝐼,𝑛

)

∞

𝑛=1

−𝑅𝑃𝑃𝑖

𝑃𝑛(𝑅𝑚𝑖 , 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖 , 𝑅𝑃𝑃𝑖)
 (

𝐵𝐼𝐼,𝑛

𝐷𝐼𝐼,𝑛

)} ⋅ (
𝑓(𝑘, 𝑛, 𝑖)

𝑔(𝑘, 𝑛, 𝑖)
) (42) 

 
𝐵𝑖,𝑘 = ∑

2

𝑛𝛽
{𝑅𝑃𝑃𝑜

𝑃𝑛(𝑅𝑃𝑃𝑜, 𝑅𝑚𝑜)

𝐸𝑛(𝑅𝑃𝑃𝑜, 𝑅𝑚𝑜)
(
𝐴𝐼𝐼,𝑛

𝐶𝐼𝐼,𝑛

)

∞

𝑛=1

−𝑅𝑚𝑜

2

𝐸𝑛(𝑅𝑃𝑃𝑜, 𝑅𝑚𝑜)
 (

𝐵𝐼𝐼,𝑛

𝐷𝐼𝐼,𝑛

)} ⋅ (
𝑓(𝑘, 𝑛, 𝑖)

𝑔(𝑘, 𝑛, 𝑖)
) (43) 

 

𝐴𝑖,0 + 𝐵𝑖,0 ln 𝑅𝑃𝑃𝑖 = 𝐴𝐼𝐼,0 + ∑
2

𝑛𝛽
{𝑅𝑚𝑖

2

𝐸𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)
(
𝐴𝐼𝐼,𝑛

𝐶𝐼𝐼,𝑛
)

∞

𝑛=1

 (44) 

 
−𝑅𝑃𝑃𝑖

𝑃𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)
 (

𝐵𝐼𝐼,𝑛

𝐷𝐼𝐼,𝑛
)} ⋅ (

𝑟(𝑛, 𝑖)

𝑠(𝑛, 𝑖)
)  

 

𝐴𝑖,0 + 𝐵𝑖,0 ln 𝑅𝑃𝑃𝑜 = 𝐴𝐼𝐼𝐼,0 + ∑
2

𝑛𝛽
{𝑅𝑃𝑃𝑜

𝑃𝑛(𝑅𝑃𝑃𝑜, 𝑅𝑚𝑜)

𝐸𝑛(𝑅𝑃𝑃𝑜, 𝑅𝑚𝑜)
(
𝐴𝐼𝐼𝐼,𝑛

𝐶𝐼𝐼𝐼,𝑛
)

∞

𝑛=1

 (45) 
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             −𝑅𝑚𝑜

2

𝐸𝑛(𝑅𝑃𝑃𝑜, 𝑅𝑚𝑜)
 (

𝐵𝐼𝐼𝐼,𝑛

𝐷𝐼𝐼𝐼,𝑛
)} ⋅ (

𝑟(𝑛, 𝑖)

𝑠(𝑛, 𝑖)
) 

 

where 𝑓(𝑘, 𝑛, 𝑖), 𝑔(𝑘, 𝑛, 𝑖), 𝑟(𝑛, 𝑖) and 𝑠(𝑛, 𝑖) are functions given in [3].  

 

The electromagnetic torque in the airgap regions is acquired by using the Maxwell stress 

tensor and integrating over a circle at a radius r within the airgap regions: The torque in 

the inner airgap is given by [3]:  

 
𝑇𝑖 =

𝑙𝑎𝑅𝑖
2

𝜇0
∫ 𝐵𝑟𝑎𝑑(𝑅𝑖, 𝜃)𝐵𝜃(𝑅𝑖, 𝜃)𝑑𝜃

2𝜋

0

 (46) 

 

                 =
𝜋𝑙𝑎𝑅𝑖

2

𝜇0
∑(𝑊𝐼𝐼,1,𝑛𝑊𝐼𝐼,2,𝑛 + 𝑊𝐼𝐼,3,𝑛𝑊𝐼𝐼,4,𝑛)

∞

𝑛=1

 

 

Where 𝑅𝑚𝑖 is the airgap radius and  

 
𝑊𝐼𝐼,1,𝑛 = −𝐴𝐼𝐼,𝑛

𝑅𝑚𝑖

𝑅𝑖

𝑃𝑛(𝑅𝑖, 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)
− 𝐵𝐼𝐼,𝑛

𝑅𝑃𝑃𝑖

𝑅𝑖

𝑃𝑛(𝑅𝑖, 𝑅𝑚𝑖)

𝐸𝑛(𝑅𝑃𝑃𝑖, 𝑅𝑚𝑖)
 (47) 

 
𝑊𝐼𝐼,2,𝑛 = −𝐶𝐼𝐼,𝑛

𝑅𝑚𝑖

𝑅𝑖

𝐸𝑛(𝑅𝑖, 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)
− 𝐷𝐼𝐼,𝑛

𝑅𝑃𝑃𝑖

𝑅𝑖

𝐸𝑛(𝑅𝑖, 𝑅𝑚𝑖)

𝐸𝑛(𝑅𝑃𝑃𝑖, 𝑅𝑚𝑖)
 (48) 

 
𝑊𝐼𝐼,3,𝑛 = 𝐶𝐼𝐼,𝑛

𝑅𝑚𝑖

𝑅𝑖

𝑃𝑛(𝑅𝑖, 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)
+ 𝐷𝐼𝐼,𝑛

𝑅𝑃𝑃𝑖

𝑅𝑖

𝑃𝑛(𝑅𝑖, 𝑅𝑚𝑖)

𝐸𝑛(𝑅𝑃𝑃𝑖, 𝑅𝑚𝑖)
 (49) 

 
𝑊𝐼𝐼,4,𝑛 = −𝐴𝐼𝐼,𝑛

𝑅𝑚𝑖

𝑅𝑖

𝐸𝑛(𝑅𝑖, 𝑅𝑃𝑃𝑖)

𝐸𝑛(𝑅𝑚𝑖, 𝑅𝑃𝑃𝑖)
− 𝐵𝐼𝐼,𝑛

𝑅𝑃𝑃𝑖

𝑅𝑖

𝐸𝑛(𝑅𝑖, 𝑅𝑚𝑖)

𝐸𝑛(𝑅𝑃𝑃𝑖, 𝑅𝑚𝑖)
 (50) 

A similar set of expressions can be derived for the electromagnetic torque in the outer 

airgap. 
 

 

2.2 Analytical models for the iron regions 

Although the solution in the air and PM regions is sufficient for the accurate prediction of 

the transmitted average torque and torque ripple, the flux density distribution in the iron 

regions is required for the accurate prediction of the iron losses. Therefore, in this 

section, analytical models for the prediction of the flux density distribution in the PPs 

regions and the stator core are developed. 

2.2.1 Pole-piece regions 

Due to the complexity of the flux density distribution in the PPs a representation through 

average values in radial or circumferential directions may not be accurate. Therefore, a 

model which provides the flux density distribution in the PPs is developed. Furthermore, 

in large PDDs the radial dimensions and circumferential dimensions of the PPs are very 

small compared to the airgap diameters. Therefore, for simplicity a Cartesian coordinate 

system is employed, Fig. 3. 
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 Fig. 3. Approximated geometry and boundary conditions 

for a PP in Cartesian coordinates. 

 

 

x and y are the local Cartesian coordinates on one PP as shown in Fig. 3, with 

 𝑥 = (𝜃 − 𝜃𝑖)(𝑅𝑃𝑃𝑖 + 𝑅𝑃𝑃𝑜)/2 = (𝜃 − 𝜃𝑖)𝑅𝑃𝑃𝑚 (51) 

 𝑦 = 𝑟 − 𝑅𝑃𝑃𝑖 (52) 

where 𝑅𝑃𝑃𝑚 is the mean radius of the PPs, 𝜃𝑖 is the angular position of the i-th PP, and 

the radii 𝑅𝑃𝑃𝑖 and 𝑅𝑃𝑃𝑜 are shown in Fig. 2. The average circumferential dimension of a 

PP is given by  

 𝐿 = 𝜃𝑃𝑃(𝑅𝑃𝑃𝑖 + 𝑅𝑃𝑃𝑜)/2 (53) 

where 𝜃𝑃𝑃 is the angular dimension of a PP. Assuming the PPs having a constant 

permeability 𝜇𝑖𝑟𝑜𝑛 ≫ 𝜇𝑎𝑖𝑟, the vector potential in the PPs satisfy the Laplace equation:  

 Δ𝐴 𝑃𝑃,𝑖  = 0 (54) 

which can be solved applying the boundary conditions, that  are determined by the 

magnetic field distributions derived in section II. Similarly to the solution in the air and 

PM regions only the z-component is considered. It is proposed, that the solution for the i-

th PP is given by 

 𝐴𝑃𝑃,𝑖(𝑥, 𝑦) = 𝐴𝑥1(𝑥, 𝑦) + 𝐴𝑥2(𝑥, 𝑦) + 𝐴𝑦1(𝑥, 𝑦) + 𝐴𝑦2(𝑥, 𝑦) + 𝐴0(𝑥, 𝑦) (55) 

where 

 

𝐴𝑥1(𝑥, 𝑦) = ∑ 𝑎𝑥1,𝑛 sinh(
𝑛𝜋[𝐿 − 𝑥]

𝑤𝑃𝑃
) sin (

𝑛𝜋𝑦

𝑤𝑃𝑃
)

∞

𝑛=1

 (56) 

 

𝐴𝑥2(𝑥, 𝑦) = ∑ 𝑎𝑥2,𝑛 sinh (
𝑛𝜋𝑥

𝑤𝑃𝑃
) sin (

𝑛𝜋𝑦

𝑤𝑃𝑃
)

∞

𝑛=1

 (57) 

 

𝐴𝑦1(𝑥, 𝑦) = ∑ 𝑎𝑦1,𝑛 sin (
𝑛𝜋𝑥

𝐿
) sinh (

𝑛𝜋[𝑤𝑃𝑃 − 𝑦]

𝐿
)

∞

𝑛=1

 (58) 
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𝐴𝑦2(𝑥, 𝑦) = ∑ 𝑎𝑦2,𝑛 sin (
𝑛𝜋𝑥

𝐿
) sinh (

𝑛𝜋𝑦

𝐿
)

∞

𝑛=1

 (59) 

 𝐴0(𝑥, 𝑦) = 𝑎𝑥0𝑥 + 𝑎𝑦0𝑦 + 𝑎𝑥𝑦𝑥𝑦 (60) 

where 𝑤𝑃𝑃 is the radial dimension of a PP. 𝑎𝑥1,𝑛, 𝑎𝑥2,𝑛, 𝑎𝑦1,𝑛, 𝑎𝑦2,𝑛, 𝑎𝑥0, 𝑎𝑦0 and 𝑎𝑥𝑦 are 

coefficients, which are determined by applying the boundary conditions at the interfaces 

between iron and air regions: 

𝜕𝐴𝑃𝑃,𝑖(0, 𝑦) 𝜕𝑦⁄      =    𝐵𝜃(𝑅𝑃𝑃𝑖 + 𝑦, 𝜃𝑖) (61) 

𝜕𝐴𝑃𝑃,𝑖(𝐿, 𝑦) 𝜕𝑦⁄      =    𝐵𝜃(𝑅𝑃𝑃𝑖 + 𝑦, 𝜃𝑖 + 𝜃𝑃𝑃) (62) 

𝜕𝐴𝑃𝑃,𝑖(𝑥, 0) 𝜕𝑥⁄      = −𝐵𝑟𝑎𝑑(𝑅𝑃𝑃𝑖, 𝜃𝑖 + 𝑥/𝑅𝑃𝑃𝑚) (63) 

𝜕𝐴𝑃𝑃,𝑖(𝑥, 𝑤𝑃𝑃) 𝜕𝑥⁄ = −𝐵𝑟𝑎𝑑(𝑅𝑃𝑃𝑜, 𝜃𝑖 + 𝑥/𝑅𝑃𝑃𝑚) (64) 

The coefficients are then given by 

 
𝑎𝑥1,𝑛 =    

1

𝑛𝜋
∫

cos(𝑛𝜋𝑦/𝑤𝑃𝑃)

sinh(𝑛𝜋𝐿/𝑤𝑃𝑃)

𝑤𝑃𝑃

0

𝜕𝐴𝑃𝑃,𝑖(0, 𝑦)

𝜕𝑦
𝑑𝑦 (65) 

 
𝑎𝑥2,𝑛 =    

1

𝑛𝜋
∫

cos(𝑛𝜋𝑦/𝑤𝑃𝑃)

sinh(𝑛𝜋𝐿/𝑤𝑃𝑃)

𝑤𝑃𝑃

0

𝜕𝐴𝑃𝑃,𝑖(𝐿, 𝑦)

𝜕𝑦
𝑑𝑦 (66) 

 
𝑎𝑦1,𝑛 =

1

𝑛𝜋
∫

cos(𝑛𝜋𝑥/𝐿)

sinh(𝑛𝜋𝑤𝑃𝑃/𝐿)

𝐿

0

𝜕𝐴𝑃𝑃,𝑖(𝑥, 0)

𝜕𝑥
𝑑𝑥 (67) 

 
𝑎𝑦2,𝑛 =

1

𝑛𝜋
∫

cos(𝑛𝜋𝑥/𝐿)

sinh(𝑛𝜋𝑤𝑃𝑃/𝐿)

𝐿

0

𝜕𝐴𝑃𝑃,𝑖(𝑥, 𝑤𝑃𝑃)

𝜕𝑥
𝑑𝑥 (68) 

 
𝑎𝑥0 =  

1

𝐿
∫

𝜕𝐴𝑃𝑃,𝑖(𝑥, 0)

𝜕𝑥
𝑑𝑥

𝐿

0

 (69) 

 
𝑎𝑦0 =   

1

𝑤𝑃𝑃
∫

𝜕𝐴𝑃𝑃,𝑖(0, 𝑦)

𝜕𝑦
𝑑𝑦

𝑤𝑃𝑃

0

 (70) 

 
𝑎𝑥𝑦 =

1

𝐿𝑤𝑃𝑃
∫ [

𝜕𝐴𝑃𝑃,𝑖(𝐿, 𝑦)

𝜕𝑦
−

𝜕𝐴𝑃𝑃,𝑖(0, 𝑦)

𝜕𝑦
] 𝑑𝑦

𝑤𝑃𝑃

0

 (71) 

 

2.2.2 Stator regions 

The solution for the flux density distribution at the stator bore radius 𝑅𝑆, obtained from 

the analysis in section II, is employed to predict the average flux densities in the stator 

regions, viz. tooth tip, tooth body and back-iron, as shown in Fig. 4. 
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 Fig. 4. Division of one tooth segment for the analysis in section 2.2.2. 

Assumed flux paths are shown as arrows for entering and exciting flux 

paths to and from the segment (above figure) and as dashed lines within 

the laminations (bottom figure).  

 

 

Since the value of the average flux density varies along the radial direction of a tooth, 

especially on load, each tooth is split into N layers of radial thickness Δℎ. The flux due to 

the stator winding through region R1 and through region R3 is given by  

 
Φ𝑅1,𝑚       = 𝜇0

𝐼𝑠𝑙,𝑚
𝑤1

𝑑1𝑙𝑎 in region R1 (72) 

 
Φ𝑅3,𝑚(ℎ) = 𝜇0

𝐼𝑠𝑙,𝑚
𝑤2

ℎ

𝑑3
Δℎ𝑙𝑎 in region R3 (73) 

where 𝐼𝑠𝑙,𝑚 is the current in the m–th slot, 𝑤1 is the slot opening and 𝑤2 is the average 

slot width, 𝑙𝑎 is the active axial length, and 𝑑1, 𝑑2, 𝑑3 and ℎ are dimensions shown in Fig. 

4. The magnetic field strength across region R2 is deduced by averaging the field 

strength in region R1 and the field strength calculated at the bottom of the tooth. The flux 

across region R2 is then given by 
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 Φ𝑅2,𝑚   = 𝜇0
𝐼𝑠𝑙,𝑚

𝑤1

1

2
(1 + 𝑤1/𝑤2)𝑑2𝑙𝑎     in region R2 (74) 

The flux in the back-iron is given by [9]  

                                 Φ𝐵,1 = −
1

𝑀
∑ (𝑀 − 𝑘)Φ1+𝑘

𝑀−1
𝑘=1                      (75) 

                                 Φ𝐵,𝑀 =   
1

𝑀
∑ (𝑀 − 𝑘)Φ𝑀−𝑘+1

𝑀−1
𝑘=1   (76) 

                          Φ𝐵,𝑚 =   
1

𝑀
∑ (𝑚 − 𝑘)Φ𝑚−𝑘+1

𝑚−1
𝑘=1 −

1

𝑀
∑ (𝑀 − 𝑚 − 𝑘 + 1)Φ𝑚+𝑘

𝑀−𝑚
𝑘=1  (77) 

where Φ𝑚 is the flux at the end of the m–th tooth, Φ𝐵,𝑚 is the flux in the back-iron 

adjacent to the m–th tooth, and M is the total number of teeth for one section. 

 

2.3 Numerical considerations 

The analytical solutions in the airgap and magnet regions are computed with a finite 

number of Fourier series components. Taking into account the number of coefficients to 

be determined the size of the matrix to be inverted is Ntotal × Ntotal, where Ntotal = 12N + 

(2NQ + 2)Q, where N is the highest order harmonic to be considered in regions I, II, III, and 

IV, and NQ is the highest order harmonic to be considered in the regions representing the 

air spaces between the PPs. In order to achieve an adequate accuracy N must be larger 

than the largest number of PM pole pairs in the MG. Therefore, for MGs equipped with a 

large number of poles, which would also have a large number of pole-pieces Q, Ntotal can 

be very large.  

 

Due to the large size of the PDD it might be built from S circumferentially identical 

sections. Therefore, the analytical solution can be improved by taking into account of the 

circumferential symmetry. Any function f of the form 

 

𝑓(𝑟, 𝜃) = ∑ 𝑅𝑛(𝑟)(𝑎𝑛 cos(𝑛𝜃) + 𝑏𝑛 cos(𝑛𝜃))

𝑁

𝑛=1

 (78) 

with a periodicity of 2π/S, where 𝑅𝑛(𝑟) is a function of 𝑟, and 𝑎𝑛 and 𝑏𝑛 are coefficients, 

can be reduced to 

 

𝑓(𝑟, 𝜃) = ∑ 𝑅𝑗(𝑟)(𝑎𝑗 cos(𝑗𝜃) + 𝑏𝑗 cos(𝑗𝜃))

𝑁𝑒𝑓𝑓𝑆

𝑗=𝑆

 (79) 

where 𝑁𝑒𝑓𝑓 is the next lower integer to 𝑁/𝑆 and 𝑗 is multiples of 𝑆. In addition, the 

number of boundary conditions related to the 𝑄 pole-piece rotor air regions are also 

reduced by a factor of S. Therefore, the total number of coefficients is reduced by a factor 

of S, and the dimensions of the matrix to be inverted are reduced by 𝑆2.  
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 COMPARISON WITH FINITE ELEMENT FOR A MAGNETIC GEAR 3

Table I gives the parameters of a MG, which has been designed to meet the requirements 

of a 10MW wind turbine, and where the turbine is directly connected to the PP rotor. The 

analytical models have been compared with magneto-static FE analysis using the design 

specified in Table I. 

 

 TABLE I 

Parameters of 10MW Magnetic Gear 

Symbol Quantity Value 

 Rated torque on the PP rotor 9.9 MNm 

 Analytical pullout torque of the MG 11.9 MNm 

G Gear ratio 7.5 

𝑝𝐻𝑆
∗  Pole-pairs on HS rotor per section 2 

𝑝𝑆
∗ Pole-pairs on stator per section 13 

𝑚𝑆 Halbach segments per pole-pair on the stator 4 

𝑄∗ Pole-pieces per section 15 

S Number of identical sections 20 

 PP slot opening angle 𝜋/300 rad 

D Airgap diameter 6.0 m 

𝑤𝑃𝑃 Radial thickness of PPs 31.4 mm 

 Radial thickness of HS rotor PMs 39.8 mm 

 Radial thickness of stator PMs 25.2 mm 

 Length of inner airgap 6.0 mm 

 Length of outer airgap 6.0 mm 

𝑙𝑎 Active axial length 1.66 m 

 HS rotor pole arc to pole pitch ratio 0.8 

𝐵𝑟 Remanence of N48SH  PMs at 100oC 1.25 T 

𝜇𝑟 Relative recoil permeability of PMs 1.05 
 

  

 

Fig. 5-Fig. 6 compare the analytical and finite element (FE) predicted radial components 

of the flux density in the airgaps of the MG element of the MG. It can be seen, that a very 

good agreement exists. Fig. 7-Fig. 8 compare the transmitted torque on the PP rotor and 

HS rotor and it can be seen a very good agreement exists between the analytical and FE 

predictions.  
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 Fig. 5. Radial flux density in the inner airgap. 

 

 

 
 Fig. 6. Radial flux density in the outer airgap.  
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 Fig. 7. Variation of transmitted torque on the PP rotor with the position. 

 

 

 
 Fig. 8. Variation of transmitted torque on the HS rotor with the position.  
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 COMPARISON WITH FINITE ELEMENT FOR A PSEUDO-DIRECT DRIVE 4

Table II gives the parameters of a 10MW PDD, which have been designed to meet the 

requirements of a 10MW wind turbine, and where the turbine is directly connected to the 

PP rotor. The analytical models have been compared with magneto-static FE analysis 

using the design specified in Table II.  

 

 TABLE II 

Parameters of 10MW PDD 

Symbol Quantity Value  

 Rated power 10 MW 

𝛺𝑃𝑃,𝑅 Rated speed of PP rotor 9.65 rpm 

 Rated torque on the PP rotor 9.9 MNm 

 Analytical pullout torque of the MG 11.9 MNm 

fout,R Rated electrical output frequency 48.25 Hz 

G Gear ratio 7.5 

𝑝𝐻𝑆
∗  Pole-pairs on HS rotor per section 2 

𝑝𝑆
∗ Pole-pairs on stator per section 13 

𝑚𝑆 Halbach segments per pole-pair on the stator 4 

𝑄∗ Pole-pieces per section 15 

S Number of identical sections 20 

 PP slot opening angle 𝜋/300 rad 

D Airgap diameter 6.0 m 

𝑤𝑃𝑃 Radial thickness of PPs 31.4 mm 

 Radial thickness of HS rotor PMs 39.8 mm 

 Radial thickness of stator PMs 25.2 mm 

 Length of inner airgap 6.0 mm 

 Length of outer airgap 6.0 mm 

𝑙𝑎 Active axial length 1.66 m 

 HS rotor pole arc to pole pitch ratio 0.8 

𝐵𝑟 Remanence of N48SH  PMs at 100oC 1.25 T 

𝜇𝑟 Relative recoil permeability of PMs 1.05 

 Copper packing factor 0.5 

 Current density at rated power 2.0 Arms/mm2 

 PM mass 13.5 tons 

 HS rotor and PP rotor laminated steel mass 14 tons 

 Stator laminated steel mass 15.5 tons 

 Copper mass 7 tons 

 Estimated structural mass ** 100 tons 

 Estimated total mass 150 tons 

 

** The structural mass for the 10MW design is assumed to be 2 times 

the active mass, a similar factor as for the 10MW design given by 

Magnomatics in [15]. 
 

  

 

Fig. 9-Fig. 10 compare the analytical and FE predicted radial components of the flux 

density in the airgaps of the MG element of the PDD. It can be seen, that a very good 

agreement exists. In addition Fig. 11 compares the transmitted torque and it can be seen 

a very good agreement exists between the analytical and FE predictions.  
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 Fig. 9. Radial flux density in the inner airgap. 

 

 

 
 Fig. 10. Radial flux density in the outer airgap.  
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 Fig. 11. Variation of transmitted torque on the PP rotor with time.  

 

At the mean radial position of the PP rotor (𝑅𝑃𝑃𝑖 + 𝑅𝑃𝑃𝑜)/2, Fig. 12 and Fig. 13 show the 

variation of the radial and circumferential components of the flux density in a PP with the 

relative circumferential position on a PP. In addition, at the relative circumferential 

position 𝜃𝑃𝑃/2 in a PP Fig. 14 and Fig. 15 show the variation of the radial and 

circumferential components of the flux density in a PP with the relative radial position on 

the PP. A good agreement exists between FE and analytical predictions. However, 

although the introduction of the non-linear steel characteristic results in increased 

discrepancies between the analytical model and FE analysis, this has minimal impact on 

the prediction of the iron losses in the PPs as can be seen in section 5. 
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 Fig. 12. Variation of radial magnetic flux density in one PP with the relative 

circumferential position at the mean radial position of the PP. 

 

 

 
 Fig. 13. Variation of circumferential magnetic flux density in one PP with the 

relative circumferential position at the mean radial position of the PP. 
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 Fig. 14. Variation of radial magnetic flux density in one PP with the relative 

radial position at the relative circumferential position 𝜽𝑷𝑷/𝟐. 

 

 

 
 Fig. 15. Variation of circumferential magnetic flux density in one PP with 

the relative radial position at the relative circumferential position 𝜽𝑷𝑷/𝟐. 
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Fig. 17 shows the circumferential flux density against the radial flux density distribution 

at the centre position of one PP for one PP electrical cycle. It may be worth mentioning 

that the fundamental electrical frequency of the flux density waveforms on the PPs is 

different from the stator and it is given by: 

 
𝑓𝑃𝑃,𝑒𝑙 =

𝐺 − 1

𝐺
𝑓𝑜𝑢𝑡 (80) 

where 𝑓𝑜𝑢𝑡 is the electrical output frequency of the PDD. It can be seen that at the centre 

of a PP there is good agreement between the analytical and FE predictions, and the flux 

density is mainly rotating.  

 

 
 Fig. 16. Variation of circumferential magnetic flux density against radial flux 

density for one PP electric cycle. 

 

 

Fig. 17-Fig. 20 show the average flux density distribution at the stator tooth and back-iron 

for no-load and full-load conditions with time. It can be seen, that a good agreement 

exists between analytical and FE model. 
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 Fig. 17. Variation of average magnetic flux density at the back of one stator 

tooth with time at rated speed on no-load conditions. 

 

 

 
 Fig. 18. Variation of average magnetic flux density at the back of one stator 

tooth with time at rated speed on full-load conditions.  
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 Fig. 19. Variation of average magnetic flux density at the back-iron with time at 

rated speed on no-load conditions. 

 

 

 
 Fig. 20. Variation of average magnetic flux density at the back-iron with time at 

rated speed on full-load conditions. 
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 ELECTROMAGNETIC LOSS ANALYSIS 5

Two sources of losses have been considered in the analysis: the copper loss and the iron 

loss. The copper loss is given by  

 𝑃𝐶𝑢 = 2𝜋𝜌𝐶𝑢(𝑙𝑎 + 𝑙𝑒)𝑅𝑆𝐽𝑟𝑚𝑠𝑄𝑟𝑚𝑠  (81) 

where 𝑙𝑎 and 𝑙𝑒 are the active and end winding length, 𝜌𝐶𝑢 is the resistivity of copper, and  

𝐽𝑟𝑚𝑠 is the rms current density in the windings. The electric loading is given by [10]: 

 
𝑄𝑟𝑚𝑠 =

√2

2𝜋

1

𝑘𝑤𝑅𝑆
2𝑙𝑎𝐵𝑝,𝑆

𝑃𝐴𝐶

Ω𝑃𝑃𝐺
 (82) 

where 𝑘𝑤 is the winding factor, 𝐵𝑝,𝑆 is the peak fundamental flux density at the stator 

bore radius 𝑅𝑠, Ω𝑃𝑃 is the rotational speed of the PP rotor, 𝐺 is the gear ratio and 𝑃𝐴𝐶  is 

the power. The iron loss is calculated by adding the various loss components [11]: 

 𝑃𝑖𝑟𝑜𝑛 = 𝑃ℎ𝑦𝑠𝑡 + 𝑃𝑐𝑙𝑎𝑠𝑠 + 𝑃𝑒𝑥𝑐 (83) 

where 𝑃ℎ𝑦𝑠𝑡 is the hysteresis loss, 𝑃𝑐𝑙𝑎𝑠𝑠 is the classical eddy current loss and 𝑃𝑒𝑥𝑐 is the 

excess eddy current loss. The hysteresis loss is given by  

 
𝑃ℎ𝑦𝑠𝑡 = 𝑘ℎ𝑦𝑠𝑡𝑓𝐵𝑚

𝛼 (1 +
0.65

𝐵𝑚
∑ Δ𝐵𝑖

𝑁𝑚𝑙

𝑖=1
) (84) 

where f is the frequency of the flux density waveform, 𝑘ℎ and 𝛼 are constants,  𝑁𝑚𝑙 the 

number of minor loops and Δ𝐵𝑖 is the change in flux density during the excursion around 

a minor loop. Since the flux density in the stator iron may be offset due to the PMs on the 

stator it is assumed that the hysteresis loss is only dependent on the relative deviation of 

the flux density. Therefore, only the amplitude of the major loop  

 𝐵𝑚 = (𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛)/2 (85) 

is considered, where Bmax and Bmin are the maximum and minimum flux density. The 

classical eddy current loss is given by 

 
𝑃𝑐𝑙𝑎𝑠𝑠 =

𝜎𝐿𝑑
2

12𝑚𝐿
𝑓 ∫ (

𝑑𝐵

𝑑𝑡
)
2

𝑑𝑡
1/𝑓

0

 (86) 

where 𝜎𝐿 is the electrical conductivity, 𝑚𝐿 is the lamination mass density and d the 

lamination thickness. The excess eddy current loss is given by  

 
𝑃𝑒𝑥𝑐 = 𝑘𝑒𝑥𝑐𝑓∫ |

𝑑𝐵

𝑑𝑡
|
1.5

𝑑𝑡
1/𝑓

0

 (87) 

For rotational flux density conditions, the iron loss is approximated by adding the iron loss 

associated with the radial and circumferential flux density waveforms. The mechanical 

losses, the AC losses in the windings and the eddy current losses in the PMs are 

neglected in the analysis. The parameters for the loss calculation are given in Table III. 
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 TABLE III 

Parameters For the Loss Calculation 

Symbol Quantity Value  

khyst Hysteresis coefficient 17.9×10-3  

𝛼 Hysteresis exponent  2.0 

kexc Excess loss coefficient 0.2 ×10-3 Ws1.5T-1.5kg-1 

d Lamination thickness 0.35 mm 

𝑚𝐿 Mass density of laminations 7.61 ×103 kgm-3   

𝜎𝐿 Conductivity  2.22 ×106 Ω-1m-1 

𝑚𝐶𝑢 Mass density of copper 8.96 ×103 kgm-3   

𝜌𝐶𝑢 Resistivity of copper at 120oC 2.4 ×10-8 Ωm 
 

 

 

Fig. 21  shows the variation of losses with output power for the PDD in Table II, where it 

can be seen that good agreement between the analytical and FE exists. For the loss 

calculation at partial load it is assumed, that at wind speeds below the rated wind speed 

the rotor speed is kept proportional to the wind speed to achieve a maximum energy yield 

[12]. Fig. 22 shows the variation of efficiency with output power. It can be seen, that 

efficiencies in excess of 98.5% can be achieved. 

 

 
 Fig. 21. Variation of losses with the output power for the PDD in Table II.   
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 Fig. 22. Variation of efficiency with the output power for the PDD in Table II.  
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 DESIGN AND OPTIMISATION PROCEDURE 6

The analytical models developed in chapters 2 and 5 are employed to calculate main 

design parameters of the PDD, such as the shear stress in the MG element of the PDD 

and the efficiency. The optimisation has been performed by employing the developed 

models according to the flowchart in Fig. 23. The procedure has been implemented into 

MATLAB code, while the parameters for the MG and the PDD are supplied by a pre-

selected parameter set in text file format. The output is supplied both in form of MATLAB 

MAT-file objects and in form of graphical output as MATLAB FIG-files. The output may 

readily be converted through MATLAB into other common formats. Furthermore, the code 

can be exported into other common languages, such as C++, and can be combined with 

a graphical user interface (GUI).  

 

 
 Fig. 23. Flowchart for the analytical model and the optimisation.  

 

6.1 Optimisation of the Magnetic Gear component for a 10MW wind turbine 

The MG element of the PDD has been optimised to achieve the maximum achievable 

equivalent shear stress with the minimum PM mass. The equivalent shear stress is given 

by [7]: 
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𝜎 =
2𝑇𝑃𝑃

𝜋𝐷2𝑙𝑎
 (88) 

where 𝐷 is the airgap diameter and 𝑇𝑃𝑃 is the torque on the PP rotor. Fig. 24 shows the 

variation of the required PM mass with the achievable equivalent shear stress for radial 

magnetisation (RM), continuous HM (cHM), and discrete HM (dHM, four segments per 

pole pair) on either HS rotor or stator, for a MG with the same pole-numbers, PP radial 

and circumferential dimensions, and airgap lengths as the MG component given in Table 

II. It can be seen that adopting a cHM on both HS rotor and stator results in the highest 

shear stress for a given PM mass. However, in practice, the realization of a cHM is 

difficult, although it could be better approximated by employing a discrete HM with a 

larger number of segments per pole-pair. Furthermore, it can be seen, that using a 

discrete HM with a low number of segmentation (4 segments per pole pair) on the stator 

would also result in a significant improvement of the shear stress. Replacing the RM PMs 

on the HS rotor by a discrete HM (four segments per pole-pair) also results in designs 

with higher shear stress, albeit, the benefits are only apparent for larger PM masses 

(more than 17 tons), while for a smaller shear stress the required PM mass may be 

significantly increased. Therefore, for the designs with a smaller shear stress, a RM on 

the HS rotor may be more desirable than a dHM in terms of PM mass reduction. 

 

 
 Fig. 24. Variation of the PM mass with the achievable equivalent shear stress, with 

either radial magnetisation (RM), continuous Halbach magnetisation (cHM) or 

discrete Halbach magnetisation (dHM) on HS rotor and stator. 

 

 

The mass of the laminated steel for the HS rotor and stator back-iron, and the PP rotor is 

calculated for each data point. The required radial width of the back-iron for the HS rotor 

is estimated as 

 
𝑤𝐻𝑆,𝑖𝑟𝑜𝑛 =

𝑅𝐻𝑆

𝑝𝐻𝑆

𝐵𝑝𝐻𝑆
(𝑅𝐻𝑆)

𝐵𝑠𝑎𝑡
+

𝑅𝐻𝑆

𝑝𝑆

𝐵𝑝𝑆
(𝑅𝐻𝑆)

𝐵𝑠𝑎𝑡
 (89) 
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where 𝐵𝑝𝐻𝑆
(𝑅𝐻𝑆) and 𝐵𝑝𝑆

(𝑅𝐻𝑆) are the peak fundamental flux density at the radius 𝑅𝐻𝑆, 

and 𝐵𝑠𝑎𝑡 = 1.5Tesla. Although the stator back-iron of the MG element would be replaced 

when integrating the MG within a PDD, it may give an indication on the required back-

iron. The required radial width of the back-iron for the stator of a MG is estimated as 

 
𝑤𝑆,𝑖𝑟𝑜𝑛 =

𝑅𝑆

𝑝𝐻𝑆

𝐵𝑝𝐻𝑆
(𝑅𝑆)

𝐵𝑠𝑎𝑡
+

𝑅𝐻𝑆

𝑝𝑆

𝐵𝑝𝑆
(𝑅𝑆)

𝐵𝑠𝑎𝑡
 (90) 

where 𝐵𝑝𝐻𝑆
(𝑅𝑆) and 𝐵𝑝𝑆

(𝑅𝑆) are the peak fundamental flux density at the radius 𝑅𝑆. Fig. 

25 shows the variation of the total active mass of a MG, which includes the PM mass, 

and the laminated steel of the PP rotor, the HS rotor and the stator back-iron for a MG, 

with the maximum equivalent shear stress. It can be seen that a shear stress for which 

the active mass is minimum exists. It can also be seen, that employing a HM, results in 

significant reductions in the active mass. 

 

 
 Fig. 25. Variation of the total active mass of a MG with the achievable equivalent 

shear stress, with either radial magnetisation (RM), continuous Halbach 

magnetisation (cHM) or discrete Halbach magnetisation (dHM) on HS rotor and 

stator. 

 

 

The required PM mass may be further reduced by considering a pole-arc to pole-pitch 

ratio α < 1. Fig. 26 shows the variation of the PM mass with the equivalent shear stress 

for several α. It can be seen, that 𝛼 = 0.8 achieves a good result for a large range of the 

equivalent shear stress. 
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 Fig. 26. Variation of the PM mass with the achievable equivalent shear 

stress for several pole-arc to pole-pitch ratios 𝛂. 

 

 

Fig. 27 shows the variation of the radial peak flux density of the harmonic corresponding 

to the pole-pair number of the PMs on the HS rotor at the radii at the interfaces between 

the PMs and the back irons of the laminated steel with the equivalent shear stress. It can 

be seen, that the peak flux density at 𝑅𝑆 decreases significantly for larger values of the 

shear stress. However, it can also be seen, that the peak flux density remains fairly 

constant over a large range of the equivalent shear stress, which would make these 

designs suitable for the integration within a PDD. 
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 Fig. 27. Variation of radial peak flux density of the harmonic corresponding to 

the pole-pair number of the PMs on the HS rotor at the radii at the interfaces 

between the PMs and the back irons. 

 

 

Fig. 28 shows the variation of the laminated steel required for the HS rotor and PP rotor 

for α = 0.8. It can be seen, that the laminated steel mass reduces with the shear stress. 

However, this may not be true for the HS rotor, due to the increasingly large flux in the HS 

rotor steel, see Fig. 27. 

 

 
 Fig. 28. Variation of laminated steel mass with the equivalent shear stress.  
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Fig. 29 shows the variation of the equivalent shear stress with the radial PP thickness 

𝑤𝑃𝑃. It can be seen, that a maximum exists and that the shear stress drops significantly 

towards small values of 𝑤𝑃𝑃. In addition, saturation effects would also significantly 

reduce the torque transmission capability for small values of  𝑤𝑃𝑃, as can also be seen in 

Fig. 29. Therefore, for the forthcoming analysis the radial PP thickness is selected as   

 
𝑤𝑃𝑃 =

𝜋𝑅𝑃𝑃𝑘

𝑄
 (91) 

 

 
 Fig. 29. Variation of equivalent shear stress with the radial PP thickness 𝒘𝑷𝑷 for 

the analytical model and for FE with steel with nonlinear characteristics. 

 

 

Due to the large size of the PDD it might be built from S circumferentially identical 

sections. It may be worth mentioning at this point, that the rated electrical output 

frequency supplied by the HS rotor PMs of the MG component is then given by  

 𝑓𝑜𝑢𝑡,𝑅 = 𝐺𝛺𝑃𝑃,𝑅𝑆𝑝𝐻𝑆
∗  (92) 

where 𝐺 is the gear ratio, 𝛺𝑃𝑃,𝑅 is the rated speed of the PP rotor, and 𝑝𝐻𝑆
∗  is the number 

of pole-pairs per section on the HS rotor. Fig. 30 and Fig. 31 show the variation of the PM 

mass in the MG element of the PDD with the achievable equivalent shear stress for 

several numbers of symmetrical sections 𝑆 and if the gear ratio is G = 7.5. The sections 

have the same number of poles on HS rotor and stator as the MG element in Table II. It 

can be seen, that for a given equivalent shear stress a number of sections exist, for 

which the PM mass is minimum.  
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 Fig. 30. Variation of the PM mass with the achievable equivalent shear stress, 

where the number of PM pole-pairs and PPs per section are the same as for the 

MG in Table II,  for several numbers of symmetrical sections S. 

 

 
 Fig. 31. Variation of total active mass for MGs with the achievable equivalent 

shear stress, where the number of PM pole-pairs and PPs per section are the 

same as for the MG in Table II, for several numbers of magnetically identical 

sections S. 
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Furthermore, Fig. 32 and Fig. 33 show the variation of the PM mass and the total active 

mass for a MG with the achievable equivalent shear stress for several gear ratios 𝐺 if all 

numbers of symmetrical sections 𝑆 are considered (Optimised designs). It can be seen, 

that at lower equivalent shear stresses and for the shown gear ratios the PM mass and 

total active mass is lower for smaller gear ratios. Finally, the design for the MG element 

given in Table II has been highlighted in Fig. 30 and Fig. 32.  

 

 
 Fig. 32. Variation of the PM mass with the achievable equivalent shear stress 

for several gear ratios G, if all possible numbers of symmetrical sections are 

considered. 
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 Fig. 33. Variation of the total active mass of a MG with the achievable 

equivalent shear stress for several gear ratios G, if all possible numbers of 

symmetrical sections are considered. 

 

 

In general the aspect ratio of the MG element of the PDD may have a significant effect on 

the performance and the active masses of the PDD. Fig. 34, therefore, shows the 

variation of the achievable equivalent shear stress with the airgap diameter, when the 

dimensions of the PPs and the PMs are varied linearly with the airgap diameter (and 

where the design for the MG element is the benchmark design in Table II). It can be seen, 

that the equivalent shear stress depends significantly on the airgap diameter. It can also 

be seen, that if the airgap length is selected as a fixed percentage of the airgap diameter 

(here 0.1%), the achievable equivalent shear stress is constant and independent of the 

airgap diameter. Furthermore, due to the constant equivalent shear stress also the PM 

mass, and the HS rotor and PP rotor laminated steel mass would remain constant. 
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 Fig. 34. Variation of equivalent shear stress for the selected MG component 

with the airgap diameter for fixed and scaled airgaps. The PM and PP 

dimensions are scaled with the airgap diameter. 

 

 

 

6.2 Optimisation of the Pseudo-Direct Drive for a 10MW wind turbine 

Fig. 35-Fig. 36  show the variation of the copper mass and the stator laminated steel 

mass with the selected airgap diameter and the current density at rated power. The 

airgap lengths are scaled linearly with the airgap diameter and the PM mass, and the HS 

rotor and PP rotor laminated steel mass are therefore given by Table II. It can be seen, 

that the copper and laminated steel mass decreases for a given current density, when 

the airgap diameter is increased. Fig. 37 shows the variation of the efficiency with the 

airgap diameter and the selected current density at rated power. It can be seen, that for a 

given efficiency a minimum diameter exists. It can also be seen, that for a given current 

density, increasing the diameter would also increase the efficiency. However, although 

increasing the diameter would improve the efficiency and decrease the active masses, it 

could also lead to an increase in the mass of the structural components and the total 

cost of the PDD [12],[13]. Fig. 38 shows the variation of the efficiency at rated power with 

the active mass. It can be seen, that efficiencies in excess of 99.0% may be achieved. It 

can also be seen, that a PDD with an efficiency of 98.0% can be achieved with an active 

mass of about 45tons. 
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 Fig. 35. Variation of copper mass with the airgap diameter and the current 

density at rated power. 

 

 
 Fig. 36. Variation of stator laminated steel mass with the airgap diameter 

and the current density at rated power. 
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 Fig. 37. Variation of rated efficiency with the airgap diameter and the current 

density at rated power. 

 

 
 Fig. 38. Variation of rated efficiency with the total active mass for several 

airgap diameter. 
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As has been discussed in section 6.1 a wide range of number of sections, and therefore 

output frequencies (see equation (92)) may be considered for the PDD. Fig. 39-Fig. 41 

show the variations of the PM mass, the active mass and the efficiency at rated power 

with the rated electrical output frequency and the achievable equivalent shear stress at 

pullout torque of the PDD. The gear ratio is G=7.5, the airgap diameter is 6.0m and the 

current density at rated power is 2.0Arms/mm2.  It can be seen, that for a given PM mass 

the equivalent shear stress varies significantly and an electrical output frequency exists, 

for which the shear stress is maximum.   

 

 
 Fig. 39. Variation of PM mass with the rated electrical output frequency 

𝒇𝒐𝒖𝒕,𝑹 and the equivalent shear stress. 
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 Fig. 40. Variation of total active mass with the rated electrical output 

frequency 𝒇𝒐𝒖𝒕,𝑹 and the equivalent shear stress. 

 

 
 Fig. 41. Variation of efficiency with the rated electrical output 

frequency 𝒇𝒐𝒖𝒕,𝑹 and the equivalent shear stress. 
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 UP-SCALING TO 20MW 7

As can be seen from Fig. 34 the equivalent shear stress remains constant when 

increasing the airgap length, the PM width and the PP width linearly with the airgap 

diameter 𝐷. If also the axial length is scaled linearly with the airgap diameter the torque, 

the PM mass and the HS rotor and PP rotor laminated steel mass would scale with 𝐷3. If 

it is assumed, that the rotational speed scales with 𝐷−1 [14], the current loading 𝑄𝑟𝑚𝑠 

remains constant (see equation (82)). Furthermore, for a fixed number of poles the 

electrical output frequency would decrease with 𝐷−1. Fig. 42 shows the variation of the 

various active masses with the rated power. It can be seen, that the required PM mass 

and laminated steel mass per unit MW increase, while the copper mass per unit MW 

remains constant. Fig. 43 shows the variation of the iron and copper loss per unit MW 

with the rated power. It can be seen, that the copper loss per unit MW remains constant, 

while the iron loss per unit MW decreases with increasing power rating, which is 

contributed towards the decreasing output frequency. Fig. 44 shows the variation of the 

efficiency with the rated power. It can be seen, that the efficiency improves when 

increasing the power rating. 

 

 
 Fig. 42. Variations of the PM, copper and laminated steel mass with the 

rated power. 
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 Fig. 43. Variations of copper and iron loss with the rated power.  

 
 Fig. 44. Variation of efficiency with the rated power.  

 

While up-scaling yields an initial indication on the scaling behaviour, further 

improvements may yet be achieved by adjusting remaining variable parameters of the 

PDD, such as the airgap diameter or the selected current density. Finally, the parameters 

for a 20MW PDD are given in Table IV after consideration of the design and optimisation 

procedures developed in section 6. Fig. 45 shows the variation of the efficiency for both 

the 10MW PDD and the 20MW PDD with the power in percent of the rated power. 
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TABLE IV 

Parameters of 10MW and 20MW PDDs 

Symbol Quantity Value for 

10MW 

Value for 

20MW 

 Rated power 10 MW 20MW 

𝛺𝑃𝑃,𝑅 Rated speed of PP rotor 9.65 rpm 6.82 rpm 

 Rated torque on the PP rotor 9.9 MNm 28.0 MNm 

 Analytical pullout torque of the MG 11.9 MNm 33.7 MNm 

fout,R Rated electrical output frequency 48.25 Hz 34.1 Hz 

G Gear ratio 7.5 7.5 

𝑝𝐻𝑆
∗  Pole-pairs on HS rotor per section 2 2 

𝑝𝑆
∗ Pole-pairs on stator per section 13 13 

𝑚𝑆 Halbach segments per pole-pair on the stator 4 4 

𝑄∗ Pole-pieces per section 15 15 

S Number of identical sections 20 20 

 PP slot opening angle 𝜋/300 rad 𝜋/300 rad 

D Airgap diameter 6.0 m 8.5 m 

𝑤𝑃𝑃 Radial thickness of PPs 31.4 mm 44.4 mm 

 Radial thickness of HS rotor PMs 39.8 mm 56.3 mm 

 Radial thickness of stator PMs 25.2 mm 35.6 mm 

 Length of inner airgap 6.0 mm 8.5 mm 

 Length of outer airgap 6.0 mm 8.5 mm 

𝑙𝑎 Active axial length 1.66 m 2.35 m 

 HS rotor pole arc to pole pitch ratio 0.8 0.8 

𝐵𝑟 Remanence of N48SH  PMs at 100oC 1.25 T 1.25 T 

𝜇𝑟 Relative recoil permeability of PMs 1.05 1.05 

 Copper packing factor 0.5 0.5 

 Current density at rated power 2.0 Arms/mm2 2.0 Arms/mm2 

 PM mass 13.5 tons 38.2 tons 

 HS rotor and PP rotor laminated steel mass 14 tons 39.6 tons 

 Stator laminated steel mass 15.5 tons 45 tons 

 Copper mass 7 tons 14 tons 

 Estimated structural mass ** 100 tons 383 tons 

 Estimated total mass 150 tons 520 tons 

 

** The structural mass for the 10MW design is assumed to be 2 times the active mass, 

a similar factor as for the 10MW design given by Magnomatics in [15]. Furthermore, the 

ratio of structural mass to active mass is assumed to scale with the diameter, hence a 

factor of 2.8 is assumed for the 20MW design. 
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 Fig. 45. Variations of the electromagnetic efficiency with the power in 

percent of the rated power. 
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 CONCLUSION 8

 

Analytical models for the prediction of the flux density distributions in the airgap, PM and 

iron regions of large Pseudo-Direct Drives (PDD) are presented. It is shown, that a good 

agreement with 2-D finite element analysis exists for the flux density waveforms, the 

transmitted torque, the torque ripple and the iron loss for linear and non-linear steels. 

Furthermore, a good agreement also exists between analytical model and finite element 

for both the iron losses in the pole-pieces and the stator.  

 

A procedure for the optimisation of large magnetic gears and PDDs has been developed 

and has been implemented into MATLAB code. The developed optimisation tool has been 

utilised for the optimisation of PDDs for a 10MW and 20MW wind turbine. It has been 

shown, that efficiencies above 98.5% can be achieved with a total active mass of about 

50tons for a 10MW PDD and 140tons for a 20MW PDD.  
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APPENDIX A: ELECTRICAL PARAMETERS OF THE OPTIMISED 10MW PDD 

Values have been calculated for the rated rotational speed of the pole-piece rotor of 

𝜔𝑃𝑃 = 9.65 𝑟𝑝𝑚. The number of turns per coil N has been chosen to be N=1 and the 

respective electrical parameters for a 10MW PDD are shown in Table 1.  

 

 TABLE V 

Parameters of a 10MW PDD 

Symbol Quantity Value 

ωPP Rated speed of PP rotor (wind turbine rotor) 9.65 rpm 

G Gear ratio 7.5 

ωHS Rated speed of high-speed rotor 72.4 rpm 

pHS High-speed rotor pole-pairs 40 

f Excitation frequency 48.25 Hz 

EC EMF/turn/coil  24.0 Vrms 

RC Resistance/turn/coil 24.6 µΩ 

LC Self-inductance/turn/coil 7.55 µH 

MC Mutual inductance/turn (between 2 consecutive coils) -3.56 µH 
 

  

 

However, it is expected that N has to be modified to suite the requirements of the 

application and the following quantities can then be calculated as follows: 

 

EMF/coil: 𝐸 = 𝑁 𝐸𝐶 (1) 

Resistance/coil: 𝑅 = 𝑁2𝑅𝐶 (2) 

Self-inductance/coil: 𝐿 = 𝑁2𝐿𝐶 (3) 

Mutual 

inductance/coil: 
𝑀 = 𝑁2𝑀𝐶 (4) 

 

Example electrical connection and calculation of circuit parameters: 

 

Fig. 46 shows a possible configuration for the generator feeding K converters. The 

number of series coils per phase per converter would be pHS/K. The parameters of the 

phases feeding the converters are then given by: 

 

EMF/phase: 
𝐸𝑝 = 𝑁 𝐸𝐶  (

𝑝𝐻𝑆

𝐾
) 

(5) 

Resistance/phase: 
𝑅𝑝 = 𝑁2𝑅𝐶  (

𝑝𝐻𝑆

𝐾
) 

(6) 

Self-inductance/phase: 
𝐿𝑝 = 𝑁2𝐿𝐶  (

𝑝𝐻𝑆

𝐾
) 

(7) 

Mutual inductance/phase: 
𝑀𝑝 = 𝑁2𝑀𝐶  (

𝑝𝐻𝑆

𝐾
) 

(8) 
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 Fig. 46. Schematic for a 10MW Generator with K converters.  
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APPENDIX B: ELECTRICAL PARAMETERS OF THE OPTIMISED 20MW PDD 

 

Values have been calculated for the rated rotational speed of the pole-piece rotor of 

ω𝑃𝑃 = 6.82 𝑟𝑝𝑚. The number of turns per coil N has been chosen to be N=1 and the 

respective electrical parameters for a 20MW PDD are shown in Table 1.  
 

 TABLE VI 

Parameters of a 20MW PDD 

Symbol Quantity Value 

ωPP Rated speed of PP rotor (wind turbine rotor) 6.82 rpm 

G Gear ratio 7.5 

ωHS Rated speed of high-speed rotor 51.15 rpm 

pHS High-speed rotor pole-pairs 40 

f Excitation frequency 34.1 Hz 

EC EMF/turn/coil  33.9 Vrms 

RC Resistance/turn/coil 24.6 µΩ 

LC Self-inductance/turn/coil 9.96 µH 

MC Mutual inductance/turn (between 2 consecutive coils) -4.57 µH 
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