Numerical studies of a 10 MW wind turbine with morphing trailing edge flaps

Numerische Untersuchung einer 10 MW Windenergieanlage mit elastischen Hinterkantenklappen

17. STAB-Workshop, 10. November 2015, Göttingen
Eva Jost
e.jost@iag.uni-stuttgart.de
Thorsten Lutz, Ewald Krämer
Overview

1. Background
2. Process chain
3. Wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
Overview

1. Background
2. Process chain
3. Wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
Development in wind turbine size

Figure: UpWind – Final report, March 2011, www.upwind.eu
Theory of similarity

Empirical scaling rules for wind turbines based on a similar turbine layout (tip speed ratio, profile selection, etc.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Proportionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>(\sim R^2)</td>
</tr>
<tr>
<td>Thrust</td>
<td>(\sim R^2)</td>
</tr>
<tr>
<td>Rotor mass</td>
<td>(\sim R^3)</td>
</tr>
</tbody>
</table>

Problem: Realisation of 10 to 20 MW turbines is hardly possible based on simple scaling

Demand of new technologies to reduce loads, load variations and mass:
- Structure
- Control
- Aerodynamics

Active trailing edge flaps

Active trailing edge flaps

Reduction of dynamic load variations due to:

- Tower shadow
- Atmospheric boundary layer and turbulence
- Yawed inflow

Basic functioning:

\[\alpha, \omega R \]

Undisturbed inflow

\[\Omega \]

Disturbed inflow

\[\Omega \]

Figure top right: Joachim Heinz; “Investigation of Piezoelectric Flaps for Load Alleviation using CFD”; M.Sc. Thesis; Riso DTU; 2009

approach velocity \(c \), wind velocity \(v \), rotational velocity \(u = \omega R \)
Previous work and objectives

- Prove of concept based on blade element momentum (BEM) and vortex methods
- Fatigue load reduction of blade root bending moment
 - BEM method ~ 18 %
 - Vortex method ~ 30 %
- Difficulty: Modeling of unsteady and viscid 3D aerodynamics

Next step: CFD simulation as high fidelity method
- validate the potential including 3D effects
- investigate unsteady and viscid effects in 2D and 3D

3D aerodynamic effects

Spatial effects:

Temporal effects:
Overview

1. Background
2. Process chain
3. Wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
Simulation process chain

CFD code FLOWer:
• developed by DLR1
• Compressible block structured finite-volume solver
• Moving/overlapping meshes (CHIMERA)
• Extensions with regard to wind turbine application
 • Dirichlet boundary condition for turbulent inflow
 • Grid deformation based on radial basis functions (FSI coupling)
 • Load integration during runtime

Mesh generation:
• Gridgen/Pointwise
• Automesh: Automatic parameterized blade meshing

Post-processing:
• Load computation
• Fast Fourier analysis

Extension for trailing edge flaps

- Definition of un-deformed and deformed surface
- Mesh deformation based on radial basis functions

2D simulation with flaps:

3D simulation with flaps:

Morphing trailing edge flap

Rigid flap: Rotation of flap around defined hinge axis

Morphing flap: Deflection based on defined function

\[
\begin{align*}
w &= \varphi(x) \beta \\
\varphi(x) &= \begin{cases}
0, & 0 \leq x < c - b \\
\frac{(c - x - b)^2}{b}, & c - b \leq x \leq c
\end{cases}
\end{align*}
\]

\(w\) : change \(y\) - coordinate
\(\beta\) : flap angle \(c\) : chord
\(b\) : flap length \(n\) : order

Internal flap structure described by Madsen et al\(^1\).

Overview

1. Background
2. Process chain
3. Wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
DTU 10 MW reference wind turbine

<table>
<thead>
<tr>
<th>Class</th>
<th>IEC 1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-in wind speed</td>
<td>4 m/s</td>
</tr>
<tr>
<td>Cut-out wind speed</td>
<td>25 m/s</td>
</tr>
<tr>
<td>Rated wind speed</td>
<td>11.4 m/s</td>
</tr>
<tr>
<td>Rotor diameter</td>
<td>178.3 m</td>
</tr>
<tr>
<td>Hub height</td>
<td>119 m</td>
</tr>
<tr>
<td>Max. RPM</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Code-to-code validation without trailing edge flaps - Simulation setup

- Code-to-code validation within FP7 project AVATAR
- 120 degree model with periodic boundary conditions
- 4 different grids: blade, spinner, nacelle and background
- Turbulence model: Menter SST, fully turbulent boundary layer
- Grid independency study performed for blade and background grid
- Total amount of grid cells: ~ 20 mio. Cells
- Comparison of integral power and thrust, sectional forces and c_p/c_f-distributions
Validation without trailing edge flaps

Overview

1. Background
2. Process chain
3. Wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
Simulations cases with flap

Flap configuration:
- Local chord length: 10%
- Radial dimensions: 70 to 80%
- Morphing flap based on 2nd order polynomial

Simulation cases:
- Pure rotor model with harmonic flap oscillations
 - 1p, 2p, 3p and 6p frequency
- Full turbine model with prescribed flap motion
 - Comparison to simulation without flap
- Separate study regarding temporal resolution and grid independency
Overview

1. Background
2. Simulation setup and methodology
3. Reference wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
Comparison of different flap frequencies
- Integral power and thrust

Flap deflection function:
\[\beta(t) = 10^\circ \cdot \cos(2\pi \omega_i t) \]
Comparison of different flap frequencies
- Sectional forces 75 % blade cut

![Graphs showing comparison of different flap frequencies with sectional forces for 75% blade cut.](image-url)
Blade wake with oscillating flap
Overview

1. Background
2. Process chain
3. Wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
Full turbine model - Simulation setup

- Full turbine model including tower and nacelle
- Computational domain: [(-540,996),(-608,608),(0,768)]
- Cell size around turbine: 1 m³
- Total amount of grid cells: ~ 60 Mio.
- Use of hanging grid nodes

- 19 m/s, steady atmospheric boundary layer based on power law
- Flap signal as function of azimuth provided by TU Delft (S.T. Navalkar, BEM-model in GH Bladed, PI control)
- minor modifications for lower gradient in flap angle
Full turbine model
- Integral power and thrust

- Evaluation of 11th and 12th revolution
- General reduction of power and thrust of the turbine
- No reduction of the load variations
Full turbine model
- Power and thrust on blade level

► Blade root bending moment: reduction of 40% of absolute mean value
Full turbine model
- Sectional force distributions

Without flaps

With flaps
Overview

1. Background
2. Process chain
3. Wind turbine and validation
4. Simulations with trailing edge flap
 1. 120°-model of the pure rotor
 2. Full turbine model with prescribed flap motion
5. Conclusion
Conclusion

- Unsteady effects play an important role on trailing edge flaps, comparison to steady polars showed:
 - Phase shift in lift and drag
 - Reduced magnitude in lift variation, Highly increased magnitude of drag variation
- 3D effects reduce the flap effectiveness (flap edge downwash)
- Simulation of the full turbine model with prescribed flap motion
 - Decreased integral power and thrust
 - Reduction of load fluctuations on blade level
 - High load gradients along the blade span (► FSI coupling needed)

Outlook

- Further study of unsteady effects (more wind speeds, etc.)
- Use of controller, FSI coupling
Thank you for your attention.
Questions?

WINDForS
Wind Energy Research Cluster

University of Stuttgart
Germany

INNWIND EU