Andreas Penzkofer and Kais Atallah Electronic and Electrical Engineering, The University of Sheffield

Principle of the magnetic gear

Integration with a permanent magnet machine to form a Pseudo-Direct Drive

Magnetic gear component

Pseudo-Direct Drive Permanent magnet machine

- Contact less gearing effect ⇒ reduction of maintenance cost
- Inherent overload protection
- \Rightarrow only the maximum torque of the magnetic gear
 - (Pullout torque) can be transmitted to the turbine.
- Torque density of PDDs may be several times higher than conventional PM machines.

Report: Upwind – Design of very large wind turbines, March 2011

Comparison of PMDD and PDD for the 10MW power class

QUANTITY	PMDD [1]	PDD [2]
Rated efficiency [%]	97.0	98.7
Copper mass [tons]	12	7
PM mass [tons]	6	13.5
Laminated steel mass [tons]	47	19.5
Airgap diameter [m]	10	6
Axial length [m]	1.6	1.66

[1] H. Polinder, et. al., "10 MW wind turbine direct-drive generator design with pitch or active speed stall control,"

[2] INNWIND.EU, Deliverable report 3.21, Design and PI of PDD generator

- **Innwind**: Increase cost effectiveness through innovative designs
- For a 10MW Permanent-Magnet-Direct-Drive the structure material cost might be as high as 2/3 of the total material cost.

Description of the model

Current sheet J_S

Flux density for a given region: $\vec{B} = \nabla \times \vec{A}$

Assumptions:

- infinitely permeable steel
- 2D \rightarrow only z-component A remains
- current sheet at bore radius

A can be expressed as a Fourier series:

$$A(r,\theta) = \sum_{n=1}^{\infty} {\binom{f_{c,n}(r)}{f_{s,n}(r)}} \cdot {\binom{\cos(n\theta)}{\sin(n\theta)}}$$

• Solutions are given for arbitrary magnetisations that depend on the circumferential coordinate.

Description of the model

Geometry for a Pseudo-Direct Drive segment

Solving process

Apply the boundary conditions for the flux density at the interfaces between the regions.

Connect the vector potential coefficients of the various regions.

Solve matrix equation to calculate the coefficients: $\widehat{M}\overrightarrow{c} = \overrightarrow{v}$

- \vec{c} is a list of the coefficients
- Excitation vector \vec{v} depends on the magnetisation and the current sheet.
- Correlation matrix \widehat{M} is given by the relations between the coefficients

Scale invariance of the model

A scaling factor *s* is applied to all radial dimensions of the magnetic gear component.

Validation with finite element analysis

circumferential position in the inner airgap 1.5 0.5 B_{rad} [T] 0 -0.5 Analytical -1 +FE (linear steel) FE (non-linear steel) Ο -1.52 3 7 8 9 0 5 6 Circumferential position [deg]

Variation of radial flux density with the

Parameters of a 10MW PDD

QUANTITY	Value
Rated power	10 MW
Analytical pullout torque	11.9 MNm
Gear ratio	7.5
Rated speed of PP rotor	9.65 rpm
Pole-pairs on HS rotor	40
Airgap diameter	6.0 m
Active axial length	1.66 m
Permanent magnets	NdFeB

Scaling of the wind turbine

- The radial and axial dimensions of the turbine are scaled.
- The power coefficient is assumed constant
- The tip speed of the turbine is fixed.

Scaling of the Pseudo-Direct Drive

- The radial and axial dimensions of the magnetic gear component have been scaled.
- The rated current density has been fixed.

Scaling of the Pseudo-Direct Drive

- The radial and axial dimensions of the magnetic gear component have been scaled.
- The rated current density has been fixed.

Further design refinements

Improvements may be achieved by adjusting

- the aspect ratio of the magnetic gear component and the PDD.
- the rated current density and the amount of copper

- The torque and the power have been fixed.
- The rated current density has been fixed.

Thank you.

