

26th International Ocean and Polar Engineering Conference Rhodes, Greece June 28th, 2016

Dipl.-Ing. Friedemann Borisade (né Beyer)M.Sc. Christian Koch, Dipl.- Ing. Frank Lemmer,Dipl.-Ing. Denis Matha, Prof. Dr. Po Wen Cheng

SWE

Stuttgart Wind Energy @ Institute of Aircraft Design

WINDFORS Windenergie Forschungscluster

Universität Stuttgart

SWE Motivation and Background

SWE/ INNWIND.EU Test Campaign

Universität Stuttgart

Test Campaign:

- 4 weeks in September November 2014
- combined wind-wave tank LHEEA at École Centrale de Nantes (F)
- 1/60 Froude-scaled Innwind 10 MW wind turbine (built by POLIMI)
- Iow-Reynolds Froude-scaled blades
- semi-submersible floater based on "OC4-DeepCwind" (built by USTUTT)
- additional ballast below the floater to achieve scaled CM
- several measuring sensors
- goals:
 - increasing experience w/ model tests
 - reducing uncertainty in results
 - deliver another semi-sub datatset

SWE Sensors: Global Floater Motion

- optical motion tracking system and inertial measuring unit (backup)
- floater surge, sway, heave, roll, pitch, yaw
- accuracy: 1,2 mm / ~0,08 deg

[Florian Amann, SWE]

SWE Sensors: Mooring Lines

- beam cell with lugs
- vertical fairlead tensions

[Florian Amann, SWE]

SWE Sensors: Wind Turbine

- multiple more sensors
- blade pitch angle
- rotor speed
- > power
- shaft bending moment
- generator torque
- rotor azimuth angle
- tower base fore-aft/sideside bending moment

SWE Sensors: Environmental Conditions

- two anemometers and three wave gauges
- wave height, wind speed
- signal noise reduction using a Butterworth lowpass filter

SWE Structural Dynamics

- blades approximated as rigid bodies
- tower modelled as flexible bodies using Timoshenko beams

good agreement between model test and simulation

Universität Stuttgart

SWE/ Hydrodynamics

- frequency domain:
 - recalculation of the floater hydrodynamics due to changed hull shape using the panel code software ANSYS AQWA

- time Domain (HydroDyn):
 - consideration of member-based Morison elements and second order terms

SWE Added Mass and Damping Coefficients

only slight changes between original OC4 and INNWIND.EU

Universität Stuttgart

SWE Mooring Dynamics

quasi-static mooring line model MAP++

- high sensitivity to axial mooring line stiffness
- high sensitivity to changes; especially regarding to anchor position
- shifting of the radial anchor distance of 0,35 % leads to a mean overall mooring line tension change of nearly 7 %
 - MAP++ shows reasonable results

SWE Aerodynamics

- blade element momentum theory with Prandtl hub- and tip loss model
- no dynamic stall model

1

0

-1 -2 -3

expanding jet flow

good agreement of the hydrodynamic properties

SWE Wave Only Load Cases

www.uni-stuttgart.de/windenergie

higher wave theories should be considered

H = 0,04 m; Tp = 0,746 s

H = 0,17 m; Tp = 1,493 s

better agreements for larger waves

measurement simulation 1st simulation 2nd

SWE Wind Only

- uncertainties in the wind generation system
- wind speed variations

surge displacement:

v [m/s]	Exp [m]	Sim [m]	Δ _{abs} [m]	Δ _{rel} [%]
1,50	0,198	0,226	0,03	12,25
1,40	0,198	0,206	0,01	3,69
2,63	0,054	0,090	0,04	40,23
2,58	0,054	0,054	0,00	0,36

- variations of blade pitch angle conducted
 - reduction of wind speed leads to better results

SWE Wind and Waves: Irregular Wave

measurement

simulation 1st simulation 2nd

measurement

simulation 1st

simulation 2nd

- v = 4 m/s; H = 0,23 m; Tp = 2 s; $\gamma = 2,87$
- 0.1 10^{0} $x_p[m^2/Hz]$ 0.050 10^{-12} $\cdot 10^{-3}$ 6 10^{0} $z_p[m^2/Hz]$ $\begin{bmatrix} \overline{z} & 16 \\ H \\ c \\ m \end{bmatrix}_{dz}^{d} 10^{-8}$ 20 10^{-12} 10^{2} 6 $\beta_{p} [deg^{2}/Hz]_{p} [deg^{2}/Hz]_{p}$ $\beta_p[deg^2/Hz]$ 4 2 10^{-10} 0.51.52.53.5 0.50 1 2 3 0 1 f [Hz] f [Hz]
 - good agreement, missing second order loads in simulation

SWE Summary

- good agreements
- but: For smaller wave heights the agreements decreases (measuring accuracy, wall friction- and water wave reflections in the tank)
- MAP++ is showing reasonable results
- higher order wave theories are required for simulation (slow drift)
- wind speed and expanding jet flow
- successful validation of the simulation model and approach
- \succ many load cases available that may be used for validation studies

SWE Outlook

- comparison of the results of different simulation codes (D4.25)
- direct calculation of the QTF matrices in a panel code software
- conduct model tests with variable blade pitch controller
- conduct model tests with turbulent wind fields
- Triple Spar Project

SWE Triple Spar Project (1/2)

- April 2016 @ DHI, Denmark
- Participants: CENER, DTU, USTUTT
- Model: DTU 10 MW reference wind turbine mounted to SWE Triple Spar

INNWIND

LIFES50+

SWE/ Triple Spar Project (2/2)

- community-based public development including specification report and FAST v8:
 - "F. Lemmer et al., *Definition of the SWE-TripleSpar Floating Platform for the DTU 10MW Reference Wind Turbine*, to be published soon online"
- specified properties:
 - modified tower properties
 - floater structural properties
 - floater hydrostatic and hydrodynamic properties
 - mooring system
 - control system

- The presented work is funded partially by the European Community's Seventh Framework Programme (FP7) under grant agreement number 308974 (INNWIND.EU). The presented work is supported by Simpack.
- The experiments have been carried out at the LHEEA facility at École Centrale de Nantes (F) funded by the European Community-Research Infrastructure Action FP7 "Capacities" specific program MARINET.
- The authors would like to thank also the staff of ECN for there assistance during the tests.

Universität Stuttgart

Thank you for your attention!

Dipl.-Ing. Friedemann Borisade

Stuttgarter Lehrstuhl für Windenergie (SWE) Universität Stuttgart Allmandring 5B - D-70569 Stuttgart, Germany

T: +49 (0) 711 / 685 - 60338 F: +49 (0) 711 / 685 - 68293

E: borisade@ifb.uni-stuttgart.de

http://www.uni-stuttgart.de/windenergie http://www.windfors.de

1993) 1993 - Unuversity of Situation

> WINDFORS Windenergie Forschungscluster