

APPLICATION OF MAGNETO-RHEOLOGICAL DAMPERS TO ALLEVIATE FATIGUE DAMAGE OF JACKET SUBSTRUCTURES FOR 20 MW WIND TURBINES

 $P = \frac{1}{2} \rho A v^3 C_p$

NJOMO WANDJI, Wilfried NATARAJAN, Anand

DTU Wind Energy Department of Wind Energy

INTRODUCTION - Problematic

- Passive tuned vibration absorbers (TVAs) and passive tuned mass dampers (TMDs) have been successful as load mitigation techniques for the DTU 10 MW reference wind turbine
- However, it has been noted that these load mitigation techniques affect only a **narrow frequency range**, which is non-optimal for a system with multiple excitation frequencies.
- Moreover, disturbances and changes in natural frequencies can lead to the **de-tuning of the damper system**.
- Requiring space at component level, they may necessitate an integrated design for acceptable performance

INTRODUCTION – Proposed Solution

- Semi-active magneto-rheological (MR) dampers are been proposed as an alternative to the passive systems
- MR dampers can have a **local effect** and can be used in **multiple units to accommodate various exciting frequencies**.
- They are **moderate in size** and may not require extra space. They can be **assembled as a scaling strategy**.
- They can be put in place at the substructure level, eliminating the necessity of **integrated design** of the couple made of the support structure and the rotor-and-nacelle assembly.
- The objective of this study is to mitigate fatigue loads on jacket substructure using MR dampers

DESIGN PARAMETERS – INNWIND 20 MW

Parameters	Values	
Wind regime	(see table 1)	
Rotor type, orientation	3 bladed - Clockwise rotation – Upwind	
Control	Variable speed – Collective pitch	
Cut-in, rated, cut-out wind speed	4 m/s, 11.4 m/s, 25 m/s	
Rated power	20 MW	
Rotor, hub diameter	252.2 m, 7.9 m	
Hub height	167.9 m	
Drivetrain	Medium speed, Multiple-stage Gearbox	
Minimum, maximum rotor speed	4.45 rpm, 7.13 rpm	
Maximum generator speed	339.4 rpm	
Gearbox ratio	47.6	
Maximum tip speed 90.0 m/s		
Hub overhang	10.0 m	
Shaft tilt, coning angle	5.0°, -2.5°	
Blade prebend	4.7 m	
Rotor mass including hub	632,016 kg	
Nacelle mass	1,098,270 kg	

5 **DTU Wind Energy, Technical University of Denmark**

DESIGN PARAMETERS – Air, Sea, Jacket

Atmospheric Conditions

- Wind speed range: from 4 m/s to 25 m/s divided into 11 bins of 2 m/s width
- Wind speed distribution: Rayleigh distribution with 9.25 as parameter
- Wind turbulence: similar to the IEC Class 1C

Sea Conditions

• Wave spectrum: JONSWAP

• 50 m water depth

• Expected sea states (peak spectral period and significant wave height) are associated to each mean wind speed.

Jacket description

- Upscaled from a model optimized for DTU 10 MW RWT (factor 1.3)
- Four legs of about 1000 mm diameter and 60 100 mm wall thickness
- Braces have OD of ca 700 900 mm.

MR DAMPER – Device

Characteristic for 200 kN

<u>Mass</u>: 250 kg.

Dimensions: 1000 mm long, 300 mm wide with 203 mm inside diameter.

<u>Piston</u>: stroke of ± 80 mm.

MR Fluid: 5.0 litres.

<u>Coil wires</u>: 1.5 km long, induction of 6.6 H, resistance of 21.9 Ω .

Kim Y, Langari R , Hurlebaus S. Semi active nonlinear control of a building with a magnetorheological damper system, Mechanical Systems and Signal Processing 23 (2009) 300–315.

MR DAMPER – Phenomenology

The force equilibrium along the x-axis gives the damper force:

$$f = m\ddot{x} + c(\dot{x})\dot{x} + kx + \alpha z + f_0$$

with the evolutionary variable z from the Bouc-Wen model

$$f_{\alpha} \dot{z} = -\gamma |\dot{x}| z |z|^{n-1} - \beta \dot{x} |z|^n + A \dot{x}$$

and the variable damping coefficient:

 $c(\dot{x}) = a_1 e^{-(a_2|\dot{x}|)^p}$

Yang G, Spencer Jr. B F, Jung H-J, Carlson J D. Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineering Applications, Journal of Engineering Mechanics 130:9 (2004) 1107–1114.

MR DAMPER – Parameters for 200 kN

Symbols	Unit	Description	Values
γ	m ⁻¹	Bouc-Wen constant	25 179.04
β	m ⁻¹	Bouc-Wen constant	27.1603
A	m ⁻¹	Bouc-Wen constant	1 377.9788
k	N/m	Accumulator stiffness and MR fluid compressibility	20.1595
p	-	Positive constant	0.2442
α	N	Positive constant	2.3000 E 5
<i>a</i> ₁	N s/m	Positive constant	35.000 E 6
a ₂	s/m	Positive constant	4 335.00
m	kg	Equivalent mass which represents the MR fluid stiction phenomenon and inertia effect	22 000
n	-	Bouc-Wen constant	6.7300
f_0	N	Damper friction force due to seals and measurement bias	5 126.00

MR DAMPER – Installation

MODELLING – Load, Stress, and Damage

RESULTS – Axial Load

RESULTS – Bending Moments

Out-of-plane bending moment

RESULTS – Shortage and Solutions

1- **Shortage**: Increase of the fatigue damage at other hotspots, between 2% and 102%.

- 2- Investigation of other **configurations**:
 - a) Unique damper
 - b) Double damper
 - c) Configuration 'Boat'
 - d) Configuration 'Rain'

RESULTS – Performance Comparison

Positive relative change indicates increase of fatigue damage.

CONCLUSION AND FUTURE DEVELOPMENTS

- The study reveals the potential of MR dampers to **alleviate fatigue damage**. Indeed, up to 77% of fatigue damage reduction at a critical joint can be obtained
- By considering various configurations, results show the necessity of selecting **appropriate configurations** in order to maximize the benefits of the fatigue reduction strategy at specific links, without causing any increased damage at other sections.
- Further studies may be required to propose a procedure of **smart distribution** of the devices around the jacket.
- The **robustness of the system** with respect to external actions and manufacturing tolerances may also be investigated, as well as the effect of the **additional mass** on the equipped brace.
- The MR damper used in this study is developed for civil engineering applications; it is encouraged to design **dedicated MR devices for jacket** (geometry and sensibility).

THANK YOU FOR YOUR ATTENTION